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Abstract. The binding energies and sizes of excitons, and energy splitting of the bright-dark excitons
in single-walled carbon nanotubes have been calculated using the nonorthogonal tight-binding model,
supplemented by the long-range Coulomb interaction. It is found that the binding energies and the sizes
of excitons not only depend on tube’s diameter d, but also its chirality. However, the splitting of the
bright-dark excitons mostly depends on 1/d2. Our obtained results show that the curvature effect is very
important for the exciton excitations in the SWNTs, especially in the smaller diameter ones.

PACS. 78.67.Ch Nanotubes – 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles,
nanotubes, and nanocrystals – 71.35.-y Excitons and related phenomena

1 Introduction

Carbon nanotubes (CNTs) have attracted much attention
theoretically and experimentally in recent years due to
their unique geometrical, electronic and optical proper-
ties [1]. The single-walled carbon nanotubes (SWNTs) can
be viewed as a long strip of graphene sheet rolled up into a
seamless cylindrical surface. Their structures can be char-
acterized by a pair of integers, (n,m), which determines
their diameters and chiralities [2].

The CNT’s optical properties are of great importance
because of their potential applications in future nanoscale
optoelectronics [3,4]. And a number of groups have stud-
ied their optical absorption and emission spectra [5–11],
among which the initial theoretical works often used the
single-electron theory to explain the experimental obser-
vations [5]. However, recent experiments and theoretical
calculations on the CNT’s optical spectra suggest that the
exciton effect dominates their optical absorption and emis-
sion [12–16]. Because of the strong quantum confinement
of electron and hole in the quasi-one-dimensional struc-
tures of CNTs, the large binding energies of excitons can
be expected [17], which have been confirmed by the recent
experiments based on two-photon spectroscopy, showing
an anomalously large value equal to a substantial fraction
of the band gap [18,19].

Therefore, a number of theoretical approaches have
been used to calculate the binding energies of CNT’s exci-
tons. One approach is the variational calculation, which,
while valuable, cannot give the spectral weight [20]. The
more accurate calculation is the solution of Bethe-Salpeter
equation using the GW-corrected quasiparticle energies,
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which employs the ground state obtained by an ab initio
approach [14]. But this approach is difficult to implement
for the chiral SWNTs with many atoms in a unit cell. So,
the semi-empirical method based on π -electron approxi-
mation has been used for a larger variety of CNTs [16–21],
in which, however, the curvature-induced σ − π mixing
was not included. As well known, the σ− π hybridization
can change significantly the electronic structures of CNTs
with small diameters. For instance, the band gap in small-
radius CNTs can be reduced down to 50%, compared to
that obtained by the π- orbital only tight-binding (TB)
model, which is caused by the strong curvature-induced
σ− π hybridization [22]. Obviously, the σ− π mixing will
have a big effect on the exciton binding energy in the
small-diameter CNTs.

So, in this paper, we have studied the curvature ef-
fects on the exciton binding energy in the SWNTs by us-
ing the symmetry-adapted nonorthogonal TB (SA-NTB)
model [23], including the long-range Coulomb interac-
tion [24]. It allows us to use a two-atom unit cell instead of
the translational primary unit cell of the SWNTs, in which
thousands of atoms could be contained for a chiral SWNT.
The obtained results show that the exciton binding ener-
gies depend strongly on both diameters and chiralities of
the SWNTs, which are well consistent with the experimen-
tal observations. In addition, a comparison of our obtained
results with those from the simple π-electron TB model
has been made, from which a more distinct dependence
of the exciton binding energy on the SWNT chirality is
found.

The paper is organized as follows. In Section 2, the
SA-NTB model and the standard exciton theory are
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introduced. The results and discussions are presented in
Section 3. And the conclusions are given in Section 4.

2 Model and method

The SA-NTB model has been used to calculate the band
structures of SWNTs [23] and their resonant Raman in-
tensity of the radial breathing mode (RBM) [26]. In this
model, a two-atom unit cell is used instead of the transla-
tional primary unit cell. And the electron’s wave function
ψkl(r) can be expanded as a linear combination of the
atomic orbitals in the two-atom unit cell.

ψkl(r) =
∑

r

aklrϕklr(r). (1)

Here, −π/T ≤ k < π/T and l = 0, 1, . . . , Nc − 1, with T
the 1D translational period of CNT and Nc the number
of hexagons in a translational primary unit cell of CNT.
aklr is the expansion coefficient. The index r runs over the
orbitals of two atoms in the two-atom unit cell.

The one-electron Hamiltonian of a SWNT can be writ-
ten as

H0 = −�
2∇2

2m
+ V (r). (2)

Here m is the electron’s mass. And V (r) is the effective
periodic potential.

From the one-electron Schödinger equation,
H0ψkl(r) = Eklψkl(r), one can obtain the matrix
equation for the coefficients aklr

∑

r′
(Hklrr′ − EklSklrr′)aklr′ = 0. (3)

Here Hklrr′ and Sklrr′ are the matrix elements of the one-
electron Hamiltonian H0 and the overlap matrix S, re-
spectively. And Ekl is the one-electron energy. From equa-
tion (3), we can obtain the electron energies Eklr and the
expansion coefficients aklrr′ , r = 1, 2, . . . , 2p. Here 2p is
the number of atomic orbitals in the two-atom unit cell
(p = 1 for the π-band TB model, and p = 4 for the σ − π
coupling TB model). In the usual orthogonal TB models,
the overlap of the atomic orbitals centered on different
atoms is ignored, and so the Sklrr′ becomes a unit matrix.

We perturb the one-electron Hamiltonian with the
π-orbital only electron-electron Coulomb interaction
Hamiltonian He−e, which can be described as follows:

He−e = U
∑

i

ni↑ni↓ +
1
2

∑

i�=j

Vij(ni − 1)(nj − 1). (4)

Here, nis = C†
isCis is the number of π electrons with spin s

on the ith atom, and ni =
∑

s nis is the total number of
π electrons on the ith atom. The C†

is(Cis) is creation (an-
nihilation) operator of electron at the ith site with spin s.
The parameter U is the on-site Coulomb interaction be-
tween two π-electrons occupying the pz orbital of the same

carbon atom, and Vij is the inter-site e-e interaction. In
the actual calculations, the long-range Coulomb interac-
tion Vij is parameterized by the Ohno formula [25]:

Vij =
U

κ
√

1 + 0.6117r2ij
. (5)

Here, rij is the distance between carbon atoms i and j in
a unit of Å, and κ is introduced to take into account the
dielectric screening effect of the medium. In this paper,
the parameters U and κ are taken to be 8.0 eV and 2,
respectively [21].

According to the standard exciton theory [24], we first
obtain the single electron state of H0, and then con-
struct the ground state | g > and the excited state of
a single electron-hole pair. The matrix of the Hamiltonian
H = H0+He−e can be calculated and diagonalized numer-
ically within the single-excitation subspace. Here, we have
used the periodic boundary condition to assure that the
total momentum of a single excitation is a good quantum
number.

Let us consider a single electron-hole pair excitation,
in which an electron with wave number kv in a state of
the valence band (v = klm) is promoted to a state of
the conduction band with wave number kc (c = klm′).
Note that the quantum number k is discrete because of
the finite length effect of the SWNTs, which is equal to
k = 2πj

LT0
(j is an integer number,−L/2 ≤ j < L/2 ).

Here L is the number of the translational primary unit
cells with its length of T0 in the SWNT. Then the single
electron-hole excited state can be constructed from the
ground state | g > as follows,

| kc,kv〉 =
1√
2
(C†

kc↑Ckv↑ ± C†
kc↓Ckv↓) | g〉. (6)

Here, “ +” represents the spin singlet and “− ”, the spin
triplet. In general, we introduce new variables k and K,
defined as follows:

kc = k + K, kv = k − K. (7)

And denote the excited state as | k,K >. Here k and
2K are the relative and the center-mass momentum of
the electron-hole pair, respectively. The matrix elements
of the excitation Hamiltonian in this representation can
be written as [24,27]

〈
k′,K′|(H − E0)|k,K

〉
=δK′,K{δk′,k[ε̃c(k+K)− ε̃v(k−K)]

+ 2δSWX(k′,k;K) −WC(k′,k;K)} (8)

for spin singlet (δS = 1) and triplet (δS = 0) states. Here
E0 = 〈g|H |g〉 is the ground-state energy. The quantities ε̃c
and ε̃v are the one-electron energies in the conduction and
the valence bands, respectively, which include the first-
order energy corrections with respect to the interaction.
WC and WX represent the direct Coulomb part and the
exchange part, respectively. They can be expressed by the
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Fig. 1. (color online) Binding energies of the E11 bright excitons versus 1/d, calculated within: (a) the SA-NTB model, and
(b) the simple π-TB model. For comparison, in (b) is also given the values got from the SA-NTB model, which are represented
by the red open circles. In both of (a) and (b), the numbers indicate the (2n + m) family indices. Within a branch, the indices
of two neighboring tubes are related by (n′, m′) = (n− 1, m + 2) For example, when 2n + m = 14, the nanotube indices are (7,
0), (6, 2), (5, 4) with their diameters increased.

coefficients of one-electron wave functions:

WC(k′,k;K) =
1
Nu

Nu∑

u=1

∑

r,r′=A,B

ei(k−k′)•(Ru,r−R0,r′ )

× V (|Ru,r − R0,r′)ac∗
r (k′ + K)ac

r(k + K)av
r′(k′ − K)

× av∗
r′ (k − K),

WX(k′,k;K) =
1
Nu

Nu∑

u=1

∑

r,r′=A,B

e2iK•(Ru,r−R0,r′ )

× V (|Ru,r − R0,r′)ac∗
r (k′ + K)ac

r′(k + K)av
r(k′ − K)

× av∗
r′ (k − K). (9)

Here A and B represent the two atoms in the two-atom
unit cell. And Nu is the number of the two-atom unit
cells in the SWNT. The superscript c and v represent the
conduction and valence band respectively.

If the system has spatial inversion symmetry, such as
zigzag nanotubes, the singlet and triplet states can be di-
vided into two types of states: symmetric Ag state and
antisymmetric Bu one.

3 Results and discussions

The parameters of the SA-NTB model were taken from a
study based on the density functional method [28], show-
ing an excellent performance in the calculation of the equi-
librium lattice and the cohesive energy of graphite [23].
According to optical selection rules, only singlet excitons
are the optically active ones. In this paper, the exciton

binding energies are calculated at K = 0. For zigzag semi-
conducting SWNTs, the tube length is taken to be 200 T0,
and for chiral semiconducting ones, the tube length is 40
T0.

We calculate the binding energies of optical active
excitons for 20 SWNTs by the SA-NTB model, supple-
mented by the long range Coulomb interactions. The cal-
culated binding energies of E11 bright excitons are given
in Figure 1a as a function of the inverse diameters 1/d, in
which the (2n + m) family indices are also indicated. It
is found from Figure 1a that the exciton binding energies
depend on both the tube’s diameter and the value of ν =
mod (2n+m, 3). It is seen clearly that for the SWNTs with
their ν = mod (2n+m, 3) = 1(mod1), the exciton bind-
ing energies could be well fitted by Eb = α

d , which does
not hold for the SWNTs with ν = mod (2n + m, 3) =
2(mod2). In addition, the exciton binding energies of the
mod1 SWNTs are greatly larger than those of the mod2
SWNTs with the same diameters. The obtained results are
in agreement with the conclusions of a symmetry-based
variational method [20]. And this family pattern is very
similar to the so-called Kataura plots for the optical tran-
sition energies E11 [5].

For comparison, we have shown in Figure 1b the bind-
ing energies of bright excitons calculated from both the
simple TB and the SA-NTB models. In the simple TB
model, the nearest-neighbor hopping parameter t0 is cho-
sen to be −2.0 eV, which has been used successfully in
reference [21]. We can see that the binding energy of E11

bright exciton got from the simple TB model depends
mostly on tube’s diameters, but very weakly on their chiral
angles. So, the E11 exciton binding energy of all SWNTs,
no matter mod1 or mod2 ones, can be fitted approximately
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Fig. 2. The same as Figure 1, but now for E22 bright excitons.

by

Eb =
α

d
. (10)

Here, the coefficient α is found to be 0.35 eV nm for the
E11 bright excitons, which is consistent with previous the-
oretical calculations [21]. And it can also be seen clearly
from Figure 1b that the discrepancy between two cal-
culated results is different for mod1 and mod2 SWNTs,
which is particularly obvious for the smaller diameter
SWNTs. For the mod2 nanotubes, there is a large dis-
crepancy between the two calculated results. The maxi-
mum discrepancy occurs in the zigzag-like tubes, but the
minimum one in the close-to-armchair tubes, i.e., the dis-
crepancy increases with decreasing chiral angles. However,
such a strong discrepancy between the two calculations is
not seen in the mod1 nanotubes. The obvious difference
between the calculated results from two TB models in-
dicates that the curvature effect brings the great modifi-
cations in the family patterns, especially for the narrow
nanotubes. And the calculation based on the simple TB
model is not sufficient for describing the large family be-
havior.

In Figure 2a, we have plotted the binding energies of
E22 bright excitons against the inverse tube diameter, ob-
tained from the SA-NTB model. The results shown in Fig-
ure 2a indicate that the E22 bright excitons of mod2 nan-
otubes have the larger binding energies than those of mod1
nanotubes with similar diameters, which is completely dif-
ferent from that shown in Figure 1a for the E11 bright exci-
tons. And the family pattern is also similar to the Kataura
plot for the E22 optical transitions. When compared with
the E11 bright excitons, we can find that the binding en-
ergy of E22 bright exciton is generally greater than that of
E11 bright exciton except for the mod1’s (8, 0) nanotube
[20,27].

In Figure 2b, we have made a comparison of binding
energies of E22 bright excitons obtained from two different

TB models. It is seen from Figure 2b that although the
binding energies of E22 bright excitons, calculated in the
simple TB model, have a larger dependence on tube chi-
rality than those of E11 bright excitons, they can still be
fitted by equation (10), but with a different α coefficient
of 0.43 eV nm, which is remarkably close to the previ-
ous theoretical result, Eb = 0.42

d eV [21]. And we also
compare our results with the theoretical ones obtained
by solving the Bethe-Salpeter equation within TB model,
finding that the variation of exciton binding energies with
1/d in the two calculations is similar to each other. From
Figure 2b, we find a very good match between the cal-
culated results within the two TB models for the mod2
nanotubes. But for the mod1 nanotubes, the results cal-
culated within the SA-NTB model deviate systematically
from those obtained by the simple TB model. Within the
same (2n + m) family, this deviation increases with de-
creasing chiral angle for mod1 nanotubes.

From our calculations, it is found that both the binding
energies of E11 and E22 excitons show the family behav-
ior, which can be understood from the trigonal warping
effect [27]. And from Figures 1b and 2b, it is clear seen
that the Eii exciton binding energies calculated within
the SA-NTB model deviate systematically from those got
from the simple TB model for the branches on the lower-
energy side of the exciton binding energies. This deviation
increases for the SWNTs with smaller chiral angels within
the same (2n+m)-family (similar d), and would become
weaker for large diameter tubes. This chiral-angle depen-
dent deviation is due to the modification of the electronic
structure by the curvature-induced rehybridization of σ
and π bands, which is stronger for the states lying be-
tween the K and M point of the Brillouin zone (BZ) of
graphite, and weaker for the states from the other sides of
the K point [29]. In semiconducting tubes, the E11 optical
transitions for mod1 and mod2 SWNTs take place along
the ΓK and KM line, respectively, in the BZ of graphene,
while the situation becomes just reverse for the E22 optical
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Fig. 3. (color online) The lowest-energy bright exciton’s wave
functions of the (7, 0) nanotube, averaged along the circum-
ference direction. Black solid and red dashed lines denote the
E22 and E11 bright excitons, respectively.

transitions. So, for the E11 optically active excitons, the
difference between the calculated results from two models
is larger for mod2 nanotubes than that for mod1 nan-
otubes. But, for the E22 optically active excitons, the re-
sult is reversed: the difference in mod1 nanotubes is larger
than that in mod2 ones. Within the same (2n+m) fam-
ily, the maximum effect of the σ − π hybridization occurs
for zigzag nanotubes, and the minimum one for closed-to-
armchair nanotubes. Therefore, the difference decreases
with increasing the chiral angle.

From Figures 1b and 2b, it is found that at the
same chiral angle, the discrepancy between the calculated
results from different TB models depends on tube’s di-
ameter, which decreases with increasing the tube’s diam-
eter. For example, the discrepancies for E11 optical ac-
tive excitons in (7, 0) and (10, 0) SWNTs are 99 and
47 meV, respectively. So, for the small diameter SWNTs
(d < 1.0 nm), the curvature effect is very important, mak-
ing the simple TB model insufficient to describe the opti-
cal properties of SWNTs [27,30].

It is known that the binding energy can be reflected
from the exciton’s wave function or the exciton size. In
Figure 3, we show the wave functions ψ(re, rh) of the
lowest-energy E11 and E22 bright excitons for the (7, 0)
SWNT, which are obtained within the SA-NTB model and
averaged over the coordinates perpendicular to the tube.
It is seen from Figure 3 that the wave function of the E11

bright exciton is less localized along the tube axis than
that of the E22 one. That is why the E22 bright exciton
has a larger binding energy than the E11 one for the (7, 0)
nanotube.

The exciton size along the tube axis can be obtained
from the formula, χ =

√〈(ze − zh)2〉. We have calculated
the exciton sizes of the E11 and E22 bright excitons for
20 SWNTs within the SA-NTB model. The obtained re-
sults, varying with tube’s diameter, are shown in Figure 4.
Again, as expected, the exciton sizes increase with tube’s
diameter and also show the (2n + m)-family behaviors.
For the E11 bright excitons, the mod2 SWNTs have larger
exciton sizes than the mod1 SWNTs. While for the E22

Fig. 4. (color online) Bright exciton’s sizes of 20 SWNTs ver-
sus tube’s diameter. Black filled squares and red open circles
denote the E22 and E11 bright excitons, respectively. The la-
bels indicate the (2n + m) family indices.

bright excitons, the situation becomes reversed, i.e., the
mod1 SWNTs have larger exciton sizes than the mod2
ones. From Figure 4, we can also see that the E11 bright
excitons always have the larger sizes than the E22 ones
except for the (8, 0) nanotube. The family behavior of
the exciton sizes can be also understood from the trigo-
nal warping effect and the tube curvature effects. And the
anomalous behavior in the exciton size of (8, 0) nanotube
indicates once again the importance of the curvature ef-
fect, especially for the narrow nanotubes.

We have also studied the diameter- and chirality-
dependence of the energy splitting between the E11 bright
and dark excitons. According to the selection rule of pho-
ton absorption for exciton in SWNTs, the triplet exciton is
optically forbidden. The lowest-energy exciton is a triplet
one, and so it is optically inactive. The energy splitting
δ between the lowest-energy exciton and the bright ex-
citon calculated within the simple TB model is given in
Figure 5a, showing an inverse proportion to the square of
tube’s diameter:

δ =
γ

d2
. (11)

Here, the coefficient γ is found to be 26.94 eV nm2. How-
ever, our calculated splitting from the SA-NTB model,
given in Figure 5b, shows the clear family behavior,
i.e., the linear dependence of the splitting on 1/d2 only
holds for the mod1 SWNTs with its coefficient γ being
26.77 meV nm2, but not for the mod2 SWNTs, which is
particularly obvious for narrow tubes. So, we think the
curvature effect on the splitting of narrow SWNTs is also
of great importance.

Finally, we would like to compare our results from the
SA-NTB model with the experimental results. In our cal-
culations, we introduce the dielectric constant κ to de-
scribe the environmental or screening influence. We find
that the exciton binding energies follow very nicely the
scaling Eb ∝ κ−α, which has been predicted by previous
theoretical work [15]. Our calculations found the coeffi-
cient α is α ∼= 1.44. Therefore, we can adjust the dielectric
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Fig. 5. (a) Energy splitting between bright and dark excitons vs. 1/d2, calculated within the simple π-TB model. The dotted
line is the linear fit. (b) The same plot as (a), but now calculated within the SA-NTB model. The labels indicate the (2n + m)
families.

constant κ to match our calculation results to the exper-
imental data. For example, when we choose κ = 2.25,
the exciton binding energies can be in an excellent agree-
ment with the experimental data in reference [13] for eight
SWNTs with d < 1.0 nm. The average error is less than
0.02 eV. Similarly, the results of Maultzsch et al. [31] for
six different SWNTs are reproduced with a standard devi-
ation of 0.02 eV by using a slightly smaller dielectric con-
stant κ = 2.2. So, our calculation results obtained by the
SA-NTB model can be well consistent with experimental
data.

In another experiment, Raman spectroscopy under
electrochemical doping was used in nanotubes coated with
a surfactant, giving (0.62±0.05) eV and (0.49±0.05) eV
for the binding energies of excitons associated with E22

transition in (7, 5) and (10, 3) SWNTs, respectively [32].
We have also calculated the binding energies of those ex-
citons. By using κ = 1.85, the exciton binding energies
calculated within the SA-NTB model are 0.58 eV for the
(7, 5) tube and 0.53 eV for the (10, 3) tube, which are
well consistent with experimental results.

On the other hand, we have compared our results with
ab initio ones obtained from solving the Bethe-Salpeter
equation [11]. For (8, 0) nanotube in Reference [11], the
excitation energies for E11 and E22 states are found to be
1.55 and 1.80 eV, respectively. The corresponding energy
ratio is E22/E11 = 1.16. The exciton binding energies for
E11 and E22 states are 0.99 eV and 0.86 eV, respectively.
In our calculations, when we choose κ = 1.2, the excita-
tion energies for E11 and E22 states are 1.56 and 1.89 eV,
respectively, and correspondingly E22/E11 = 1.21. The
calculated exciton binding energies for the E11 and E22

states from the SA-NTB model are 1.02eV and 1.00 eV,
respectively. It is seen that our results are consistent with
the ab initio results.

4 Conclusions

In summary, we have calculated the binding energies and
sizes for the E11 and E22 bright exciton using the standard
exciton theory within both the simple and the nonorthog-
onal TB models. It is found that the exciton binding
energies and sizes calculated within the nonorthogonal
TB model have shown a strong diameter- and chirality-
dependence, and a distinct family behavior. Comparison
between the calculated results within the two TB models
indicates that the curvature effects are important, chang-
ing significantly the exciton binding energies and their
sizes. Finally, we have also found that the energy split-
ting of the bright-dark excitons is inversely proportional
to the square diameter (∼1/d2).

This work was supported by the Natural Science Foundation
of China under Grant No. 90503012, and also from a Grant for
State Key Program of China through Grant No. 2004CB619004
and 2006CB921803.
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